وجد علماء طريقة لصنع الماس من الزجاجات البلاستيكية المستعملة. وهي تقنية يمكن أن تساعد في الحد من النفايات البلاستيكية. ويمكن لهذا الألماس النانوي المعاد تدويره أن يتضمن مجموعة واسعة من التطبيقات، بما في ذلك أجهزة الاستشعار الطبية وتوصيل الأدوية. وصمم فريق العلماء من مركز هيلمهولتز درسدن روسندورف (HZDR) وجامعة روستوك والمدرسة متعددة التقانات الفرنسية، تجربة في مركز المعجل الخطي ستانفورد (SLAC) في مختبر المسرع الوطني في كاليفورنيا، هذه التجربة المثيرة لمعرفة المزيد عن ظاهرة "مطر الماس" على الكواكب الجليدية العملاقة مثل نبتون وأورانوس. وداخل هذه الكواكب الجليدية العملاقة درجات حرارة تصل إلى عدة آلاف من الدرجات المئوية، والضغط أكبر بملايين المرات مما هو عليه في الغلاف الجوي للأرض. ويُعتقد أن هذه الظروف قادرة على تفكيك المركبات الهيدروكربونية، ثم ضغط مكون الكربون إلى ماسات تغوص في أعماق نوى الكواكب. ولتقليد هذه العملية، أطلق العلماء ليزرا عالي الطاقة على بلاستيك البولي إيثيلين تيريفثاليت (PET)، وهي مادة هيدروكربونية شائعة الاستخدام في العبوات أحادية الاستخدام، ووجدوا أن موجة الصدمة الناتجة عن هذه الومضات شهدت نمو هياكل صغيرة شبيهة بالماس حسب "روسيا اليوم". وقال دومينيك كراوس، الفيزيائي في مركز هيلمهولتز درسدن روسندورف (HZDR) والأستاذ في جامعة روستوك: "يتمتع البولي إيثيلين تيريفثاليت بتوازن جيد بين الكربون والهيدروجين والأكسجين لمحاكاة النشاط في الكواكب الجليدية". ومن المعروف أن خليطا من المركبات المكونة من الهيدروجين والكربون توجد على بعد نحو 5 آلاف ميل تحت سطح أورانوس ونبتون. ويتضمن هذا الميثان، وهو جزيء يحتوي على كربون واحد فقط مرتبط بأربع ذرات هيدروجين، ما يسبب اللون الأزرق المميز لنبتون. وفي دراسة أجريت عام 2017، نجح فريق مختبر المسرع الوطني في محاكاة عملية المطر الماسي لأول مرة عن طريق إطلاق الليزر البصري على البوليسترين. واستخدم البوليسترين لتقليد بنية الميثان، حيث أنه يحتوي أيضا على الهيدروجين والكربون فقط. وأنتجت الأشعة السينية الشديدة موجات صدمة داخل المادة، ولاحظ العلماء دمج ذرات الكربون في هياكل الماس الصغيرة التي يصل عرضها إلى بضعة نانومترات. وأشار سيغفريد غلينزر، مدير قسم كثافة الطاقة العالية في مركز المعجل الخطي ستانفورد، إلى أن "الأمر أكثر تعقيدا داخل الكواكب. وهناك الكثير من المواد الكيميائية في هذا المزيج. ولذا، ما أردنا اكتشافه هنا هو نوع التأثير الذي تحدثه هذه المواد الكيميائية الإضافية". وبالإضافة إلى الكربون والهيدروجين، يُعتقد أن عمالقة الجليد تحتوي على كميات كبيرة من الأكسجين. وسعى العلماء إلى اكتشاف تأثير الأكسجين على تكوين الماس النانوي داخل نبتون وأورانوس. وللقيام بذلك، كرروا تجربتهم السابقة مع فيلم من بلاستيك البولي إيثيلين تيريفثاليت (PET)- وهو هيدروكربون يحتوي أيضا على الأكسجين - والذي يعيد إنتاج تكوين الكواكب بشكل أكثر دقة. واستخدموا ليزرا ضوئيا عالي الطاقة في مركز المعجل الخطي ستانفورد لتسخين العينة لفترة وجيزة حتى 6000 درجة مئوية. وأدى ذلك إلى حدوث موجة صدمة ضغطت المادة لبضع نانوثانية إلى مليون ضعف الضغط الجوي. وباستخدام طريقة تسمى حيود الأشعة السينية، راقب العلماء الذرات وإعادة ترتيبها إلى مناطق ماسية صغيرة، وقاسوا أيضا حجم وسرعة نموها. ومع وجود الأكسجين في المادة، وجدوا أن الألماس النانوي قادر على النمو عند ضغوط ودرجات حرارة أقل مما لوحظ سابقا. وقال الدكتور كراوس: "كان تأثير الأكسجين هو تسريع انقسام الكربون والهيدروجين وبالتالي تشجيع تكوين الألماس النانوي. وهذا يعني أن ذرات الكربون يمكن أن تتحد بسهولة أكبر وتشكل الماس". ووفق "ديلي ميل" يتوقع العلماء أن الماس داخل نبتون وأورانوس سيصبح في الواقع أكبر بكثير من تلك المنتجة في هذه التجارب، ويحتمل أن يزن ملايين القراريط. وقد يدعم هذا الافتراض بأنه، على مدى آلاف السنين، داخل عمالقة الجليد كانت "تمطر حرفيا ألماسا". تابعوا آخر أخبارنا المحلية والرياضية وآخر المستجدات السياسية والإقتصادية عبر Google news Share طباعة فيسبوك تويتر لينكدين Pin Interest Whats App
مشاركة :