أظهرت نتائج بحثية طريقة جديدة لتشخيص انقطاع التنفس أثناء النوم باستخدام شبكة الذكاء الاصطناعي ونماذج التعلم العميقة، لتحسين قدرة التشخيص باستخدام مستوى الأكسجين في الدم عن طريق قياسه من مشبك الأصبع، وتقليل الوقت والتكاليف المرتبطة بالتقنيات التقليدية. وتميزت الدراسة البحثية بعنوان «استخدام الذكاء الاصطناعي ونماذج التعلم العميقة لقراءة وتقييم دراسات النوم لتشخيص انقطاع التنفس أثناء النوم، وتوفير الوقت» لطالبة الدكتوراه ملاك المرشد، بتقديم معلومات دقيقة لقياس التغير على مستوى الثانية الواحدة، مما يساعد الأطباء في تفسير النتائج بشكل دقيق وإسهامها في سرعة التشخيص وتقليل الانتظار لبدء العلاج. وأجريت خلال الدارسة التي أشرف عليها مدير المركز الجامعي لطب وأبحاث النوم بكلية الطب جامعة الملك سعود الدكتور أحمد باهمام، تجربة تصاميم مختلفة وأظهرت النتائج أفضل الأداء باستخدام ترميز موضعي جديد قابل للتعلم، كما تم اختبار النموذج باستخدام دقات مختلفة من 1 إلى 360 ثانية، وأكدت الاختبارات المختلفة تفوق هذه الطريقة مقارنة بالحلول الحالية. النتائج تسهم في: تحسين القدرة على تشخيص انقطاع التنفس أثناء النوم تقليل التكاليف المرتبطة به تشخيص اضطرابات النوم من خلال الأجهزة القابلة للارتداء هذه الطريقة تقلل بشكل كبير من الحالات التي لم يتم تشخيصها تحسين الصحة للأشخاص الذين يعانون من هذا المرض
مشاركة :